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Renormalization group calculations in d=  4 and d=  4 - ~  are performed for a 
system of finite size. A form of mean-field theory is used which yields a rounded 
transition for a finite system, and this allows a sensible expansion in fluc- 
tuations. A combination of Ewald and Poisson sum techniques is used to 
produce explicit numerical results for the specific heat in d=  4 which, with the 
setting of two nonuniversal metrical factors and the fourth-order coupling con- 
stant may be compared with simulations. The numerical visibility of logarithmic 
corrections is investigated. The universal scaling function for the specific heat to 
relative O(e) is also evaluated numerically. 

KEY WORDS:  Finite size; scaling; critical phenomena; logarithmic correc- 
tions. 

1. I N T R O D U C T I O N  

Monte Carlo methods seem destined to play an increasingly prominent role 
in the study of equilibrium and nonequilibrium problems in statistical 
physics. This is due in large measure to the greater availability of powerful, 
high-speed computers and to the ongoing development of special purpose 
processors. Even with the best computing systems, however, simulations 
are still restricted essentially to microscopic systems. Studies of phase trans- 
itions are thus made problematical; the thermodynamic singularities that 
are the hallmark of a phase transition occur only in the infinite system 
limit. The central task in the interpretation of Monte Carlo data, when one 
is studying phase transitions, is to extrapolate to the thermodynamic limit 
from results for relatively small systems. 
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The most widely used method of extrapolation to large size is based 
on phenomenological finite-size Scaling/~) In its traditional and simplest 
form a thermodynamic function, denoted generically by A, which is a 
function of reduced temperature t = ( T -  Tc)/Tc and (linear) system size L, 
is assumed to take the asymptotic form. 

A(t, L)~t~X(tVL) (1.11 

where r is the bulk critical exponent associated with the particular function 
A, and v is the standard correlation length exponent. Such a form is expec- 
ted to hold in the domain L>>a, r  V>>a, where a is the microscopic 
length or lattice spacing. In general the function X(x) is expected to have a 
singularity as x ~ 0 which causes the function A to behave smoothly as 
t ~ 0 for fixed L. On the other hand X(x--, oe) approaches a constant 
yielding the proper singular behavior in t for an infinite system. 

To extract, say, the critical exponent r (or more precisely r/v) from a 
Monte Carlo simulation one typically might evaluate A(t = O, L), assuming 
the bulk critical temperature is known or can be estimated. Then one 
extrapolates it according to A ( t = O , L ) ~ L  -~/v, which comes from the 
limiting form J((x)~x -~/~ as x ~ 0 .  Many successful evaluations of the 
usual critical exponents (2) along with such less well-studied exponents as 
that for the surface tension (3) have been accomplished using this approach. 

Recently, Br6zin (4) has shown that the form (1.1) appears within the 
field theoretic renormalization group structure. Br6zin also performed 
calculations on the isotropic N-vector model in the spherical model 
(N--* oe) limit. Other spherical model calculations have also been carried 
out by Fisher and Barber, ~5) Singh and Pathria, (6) and Rudnick. (7) 

Special subtleties appear in d>~4 because of the breakdown of 
hyperscaling, and some aspects of this behavior may be seen within the 
context of spherical models. In the upper critical dimension dc= 4 one 
expects logarithmic corrections to mean-field-like critical singularities. Such 
corrections have remained experimentally elusive (for example, in tricritical 
behavior in dc = 3), and it is reasonable to ask whether simulations, with 
proper guidance as to the detailed size dependences to be expected, can be 
used to extract logarithms. At present no explicit calculations of scaling 
functions for Ising-like systems (or more generally for finite N) have been 
caried out. 

We thus feel it instructive to carry out an explicit finite-system 
calculation in d = 4 to see what subtleties simulators may have to deal with 
to achieve a proper extrapolation. A proper renormalization group 
calculation in d = 4 is presumably asymptotically exact in the case of the 
Ising model and, in principle, may be compared to a standard Ising 
simulation with the adjustment of two nonuniversal amplitudes and the 
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fourth-order coupling constant. As will be seen graphically below, without 
knowledge of the true infinite system (second-order transition) behavior, 
one might easily conclude from simulations that the ordering transition is 
first-order or, perhaps, that there is no transition at all. Using the results of 
this calculation one can also attempt to determine whether logarithmic 
behavior is visible in the finite-size region. 

A fundamental objection to the application of field theoretical techni- 
q u e s - a n d  the epsilon expansion in part icular-- to the study of finite 
systems has been raised by Br6zin/4) He has noted that strict mean field 
theory, the asymptotically correct description of the d = 4 critical point and 
the theory about which one expands in 4 - e  dimensions, predicts a sharp 
phase transition in all dimensions for infinite as well as finite systems. Such 
a prediction for a finite system is clearly pathological since all singularities 
are rounded. We have managed to overcome this objection by using a 
variant of mean field theory (7) that rounds properly when the system is 
finite. We find that hyperscaling breaks down when d >  4 as it does in the 
thermodynamic limit, but there are otherwise no difficulties in principle or 
practice in our approach. 

The outline of this paper is as follows. In Section 2 we present a ver- 
sion of man-field theory for a finite system, while in Section 3 we evaluate a 
one-loop graph for such a system. A combination of Ewald and Poisson 
sum methods is required for good convergence. In Section 4 the proper 
renormalization group calculation is performed, while in Section5 
numerical evaluations and plots are presented. Calculations for d =  4 -  e 
are presented in Section 6 and concluding remarks and summary appear in 
Section 7. Some further details are included in an Appendix. 

2. M E A N - F I E L D  T H E O R Y  FOR A FINITE S Y S T E M  

We begin, as usual, with a Landau-Ginzburg-Wilson description of 
the system in which case the Hamiltonian divided by k 8 T is taken to be 

1 1 4 hs] H = fo dax [~ (Vs)2 +~ rs2 +~. us - (2.1.) 

where the spatial integration is over a system of linear extent L in each of 
its d dimensions. Other shapes may also be considered and generalization 
to an N-component order parameter is straightforward. As usual, the 
parameter r oc T -  To, where To is a reference temperature. The statistical 
mechanics of the system follow from the partition function 

Z = ~ Ds e -"  (2.2) 
J 
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The system is confined to a finite box with periodic boundary conditions. 
One writes s = m + o., where it is understood that m = const, and o. contains 
no k = 0 part. Then 

a/1 2 1 -- hm) H = L  ~-~rm + ~ u m  4 
/ 

+f~adaxI~(Vo.)2+~(r -}- T f l  o.2 -[- T --1- ~ - ~ . u m 2 " ~  umo'3 1 uo.4] (2.3) 

The additional term involving 5 daxo. vanishes since o. has no k = 0 part. 
Hence the partition function (2.2) may be written 

Z = f dm e Hmf(m) e-  F'l(m) (2.4) 

where 

exp / ' l (m)  --- f do e H(~;m) (2.5) 

with H(o.; m) the o.-dependent part of (2.3), and Hmj(m) is the (mean-field) 
first term of that equation. Fl(m) will be evaluated as usual via a diagram 
expansion; since there is no k = 0 term, the expansion will take the form 

1 
F~(m) = ~  ~ ln(k 2 + r + um2/2) + "" (2.6) 

k~0 

where the dots represent terms higher order in u. We shall return to this 
term below. The terms in Fi(m) are at least O(u~ whereas the mean field 
part gives terms of order u -l.  

Neglecting fluctuctions completely one has the mean-field contribution 
to the free energy (in zero field) 

In Zmr = l n  { f  dmexp[-La(rm2/2+um4/4 , )]}  (2.7) 

from which the entropy and spcific heat follow by differentiation with 
respect to r. Notice that even at r = 0 moments of m, i.e., (rn2J), are per- 
fectly finite for finite L so long as u > 0  (which we, of course, assume). 
Within mean field theory the moments have the scaling form 

- Z,,,) f dm m 2j exp[ - g,~r(m)] (m ?j ) 

= (uL a) J/2Dj(rZd/2/ul/2) (2.8) 
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The heat capacity then has the form 

02 In Zmr 1 
C = L  4 Or 2 _ 4 [ { m 4 ) _ ( m 2 ) 2  ] 
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(2.9) 

The functions Dj are perfectly well behaved th rough  zero argument;  from 
(2.7) it is seen (from steepest descent arguments)  that  a singularity can 
develop in the limit of infinite L. In Fig. 1 we display the specific heat C/L d 
as a function of " temperature"  r for various values of L. Notice the shar- 
pening up and the appearence of  a discontinuous j u m p  as L ~ oe. It is true, 
however, that  such a discontinuity will appear  for all d >  0, which is a well- 
known defect of mean-field theories. In our  calculation in d =  4 moments  of  
the form (2.8) will play a central role. 

We turn now to evaluation of a basic fluctuation integral in d =  4. 

1' C/L4 

", | \ / 

\ \  0 /  / I,/ Q L=8 

\ 2 

-0.02 -0.01 0 0.01 0.02 
r 

Fig. 1. Specific heat as a function of reduced temperature from mean-field calculation for 
various system sizes, L. The coupling constant u has been set to unity. 



358 Rudnick, Guo, and Jasnow 

3. O N E - L O O P  T E R M  

An essential ingredient of the finite-size calculation is the evaluation of 
the term 

1 
I ( r )  = y~ r + k2 (3.1) 

k r  

from which one may obtain the lowest-order fluctuation term in the free 
energy by integration, namely, 

k2-k - T fT 
2 in ~ = Jo dr I (r)  (3.2) 

k ~ O  

In (3.1) and (3.2) the wave vectors are appropriate to periodic boundary 
conditions, 

2n 
k(n) =-~- n, n~=0,  1 ,  +_2 .... (3.3) 

for i =  1, 2,..., d =  4. Then I(r)  may be written 

I(r)  = Z as  e -  ~(r + k2) + j ,  
k v a 0  

where we shall let B =  c(L/2~) 2 and choose the arbitrary constant c for 
good convergence. (The choice c = 7z will finally be made.) In the first term 
of (3.4) Poisson summation techniques are used below. But for the second 
term we have 

cL  2 ~ ~ 
I2 = (-~)2 n~0 j 1 dxe-rc(L/27r)2Xe -cn2x 

cL 2 I oo 
- (-f~-2 Jt dx  e " (L /2 '~  13 (3.5) 

where 

X(y)-  ~ e vn2 (3.6) 
n =  cx3 

Now consider the first term I1 of (3.4) and use the Poisson formula ~8) 

Zf[k(")q-~-(t/2~) 4 ~ f d4kf(k) eim'kL 
n m =  

(3.7) 
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to find 

11 = - -  r l  - e  + 
r 7 \ ~ / ]  1 

+ ~ d4k r +k 2 (3.8) 

Combining I1 and 12 one has 

_ k 2 =  ~ Jr+k2+C ~ s dxe rc(L/Z~)Zx[x4(fx)--l] 

~2(Lt2 ~ ( ~ - )  1 l 

_~ g2  F C rc(L/27t)2 oo e dx 
x + rc(L/2rc) 2 

Tg 2 ( L t 2 e-r<(c/2~)2 + 1 (e-r<(c/2~)2-- 1) (3.9) 

The first term is immediately recognizable as the bulk contribution. All the 
other terms are finite-size corrections in which r--, 0 may be taken. Clearly 
from the structure of (3.9) only usual bulk counterterms are required to 
remove the high momentum cutoff to infinity. This feature has previously 
been noted by Br6zin. (4) Note also that formally the finite-size terms come 
in at O(u~ 

Straightforward manipulations are required for effecting the r 
integration as in (3.2). The results may be expressed in terms of the 
exponential integral (9) 

f oo C x 
EI(Z ) = d x  - -  (3,10) 

z X 

The most direct expression is valid for the case 

1 T - r  +-~um2>O (3.11) 

although from (2.4) one would apparently need negative values. For  r 
somewhat negative, but r + (2~/L) 2 > 0, an alternate representation can be 
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constructed. It turns out to be sufficient to consider the case T > 0  (see 
below), in which case (choosing c =  7r) 

1 
2L4k~O l n -  

k 2 + T 1 d4k k 2 + T 

k 2 2 f - ~ In ~'7 

f 1 1 ~ 1 ( 1 - e  ..... ) [ X 4 ( ~ x ) - l ] d x + 6 ~ 5 ~ z T Z E ~ ( c o )  
~- ~ " 4  1 X 

f 1 ~ x ( 1 - e  ~~ ' ) [ x a ( l r x ) - l ] d x - ~ s  ~') 
+ - f ~  ~ 

(+) ' - e -'J 2L 4 ( E ~ ( ~ ) -  In (on) + ?) (3.12) 

where ? =0.57721 is Euler's constant and, for convenience, ~o = L2T/47r. 
Notice the function AT, defined in (3.6), has an argument at least equal to 7r 
in (3.12) and is rapidly convergent. Likewise E1 has an accurate 
polynomial approximant;  hence the representation (3.12) is free of 
numerical or convergence difficulties. It forms the core of the full renor- 
malization group calculation to which we now turn. 

4. RENORMALIZATION GROUP APPROACH 

Standard bulk counterterms are sufficient to renormatize the 
theory. (1~ They are introduced into (2.1) in which case the full (renor- 
malized) exponential, L 4(Hmf-k- F l), becomes 

FR(t, m, u, ~c, L ) =  Fbare(r, m, u, A, L ) - -  Fbareit=O 
m=O 

t ~Fbare 1 t2 O2Fbare 

- T , = o - 2  
(4.1) 

m =0 m =0 

where, as usual, the following replacements are made in the unrenor- 
malized or bare quantities r, m, u on the right-hand side: 

r ~ Z~2t + 6t 

u --* ~c~Zuu (4.2) 

m - - *  Z~/2m 

and from now on t, u, m, etc. all refer to renormalized quantities. As usual, 
e = 4 -  d. The three additive renormalizations are the same as for the bulk 
system, and Fbare is calculated diagrammatically from (2.1), the leading 



Finite-Size Scaling and the Renormalization Group 361 

contributions being the mean field part Hmf(m ) and the loop in (2.6). All 
momentum integrals may be regularized with a hard cutoff A which is 
eventually removed to infinity, and x in (4.1) introduces the basic (inverse) 
length scale into the renormalized theory. Then acting with Kd/dK on (4.1) 
and introducing Sa= [2a-l~a/2F(d/2)]-i as the surface of a unit sphere in 
d dimensions, one finds the inhomogeneous RG equation, 

K-~+ W(u)-~u-~q(u)m~m+ [ - 2 +  ~o2(u)] t F R 

Sa (1  e 5 ) -- 8V ---~+-~ SdU t2K -(4-d) (4.3) 

which is solved in the usual fashion. 3 Note that the inhomogeneous term is 
appropriate to two loops, which is necessary in getting all O(e ~ con- 
tributions to the free energy. One finds in d = 4 

e R = FR(p2t(p), m(p), u(p), Kp, L) 

Sd fl e + _~v dp d__~ [ l ___~_l_~ SdU(X)] t2(X)(Kx)-(4 d) (4.4) 

where the last term is the trajectory term and formally is O(u-1). The flow 
equations are, as usual, (1~ 

dr(p) 
P T p  = [ - 2  + y,2(u(p))] t(p) 

du(p) 
p ---~-p= W(u(p)) (4.5) 

dm(p ) 1 
P alp =--~q(u(p))m(p)  

with, in d =  4, 

W ( u )  = ~sdu 2, 7~2(u) = ~ & u ,  ,7(u) = ~ s ~ u  2 

Generalization to an N-component system is straightforward. Solutions of 
the flow equations yield 

/,/ 
u(p)  - 

1 - (3/2)Sdu In p 

t 

t ( p )=  [1 -- (3]2) Sduln p]1/3 (4.6) 

m(p) = m exp{ 1/72[u - u(p)] } 

3 For future reference, the form of general d has been written. 
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which may be substituted into (4.4) to give a complete representation of 
the finite-size free energy. The partition function (2.4) becomes 

Z =  f ~  dm e -L4rR (4.7) 
- - o o  

For evaluation of the free energy a choice of p = p* will be required. This 
will be discussed below. 

At lowest order, often refered to as renormalized man field theory 
(Rmf), and which yields the free energy correctly to leading logarithms, one 
neglects loop contributions to FR but retains the trajectory term in (4.4). 
Hence at this order, which formally keeps terms O(u-~), 

1 +, 
rRmr(t,m,u;tc, L )=~p*Zt (p*)m2(p*)+ u(p*)m4(p *) 

(3 
+ ~ [ 1 -  1-2&u (4.8) 

The specific heat follows from (4.8) according to 

C = L _  4 ~2 
L4 ~-~ In ZRmf 

/ (C~FRmf~2\ __ L 4 / 0F.mf\ 2 / (~2Fgm,~ 
= L 4 \ \  0t J / \ c~t / - \  0t 2 / (4.9) 

where averages are evaluated according to the probability distribution in 
(2.7) with 

r --* p*2t(p*), u ~ u(p*) (4.10) 

(Henceforth all averages are considered to be taken by such procedure.) 
Note that in (4.9) only explicit temperature derivatives are taken; the 
implicit t dependence of p* is ignored. The results are formally independent 
of p* and taking derivatives of p* formally yields higher-order 
contributions. (11) Note also that all averages entering (4.9), namely, 
(m4(p*)) and (mZ(p*)) depend on the combination wl) -1/2 where 
w = L2p*2t(p *) and v = u(p*). These same variables enter the loop correc- 
tions. A more explicit evaluation of (4.9) is provided in the Appendix. 

The choice of p* must be made for detailed evaluations. The choice we 
have made is to determine p* from 

1 1 p*h(p*) +~ u(p* ) { m~(p* ) ~ + Z~ = (~p* )~ 
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where, as noted, (m2(p*)) is determined as follows from (2.7) with 
r ~  p*2t(p*) and u--, u(p*). The choice has the following interpretation. 
The quantity p*2t(p*)+ 1/2u(p*)mZ(p *) has the interpretation of the 
"mass" appearing in the renormalized Hamiltonian. If the temperature 
t ~ T -  T,. is such that the bulk correlation length ~ is large compared to 
the system size L, renormalization must end when the effective block spin 
size [ ~ (~cp*) 1] is on the order of L. This is the strongly finite-size regime 
and p*~(xL)  -1. On the other hand if L is much larger than the bulk 
correlation length, renormalization transformations are continued until the 
block spin size is on the order of ~. This corresponds to p*2t(p*)+ 
1/2u(p*)m2(p*)=(p*~:) 2, the usual bulk-system determination of p*. 
Equation (4.13) interpolates between these regimes. To find p*(t, L) we 
must numerically solve (4.11). This must be done iteratively since p* is 
required for (m2(p*)). The starting choice (mZ(p*) )=  -6p*Zt(p*)/u(p *) 
allows convergence after a small number of iterations. Numerical results 
will be displayed in the next section. 

Loop corrections may now be handled, in fact, iteratively. Formally 
one must insert the renormalized F~ which is given in the Appendix into 
(4.7). However, order-by-order one may make the following expansion: 

where 

Z 
~ - - o 0  

oO 

dm exp [ - L4(FRmf  n t- FR,1 ) ] 

dm exp{ --t4[I 'Rmf(m2(p)) + FR,~((m2(p))) + zl] } (4.12) 

A -- FR.,(m2(p)) -- FR, l((m2(p))) 

and averages are computed with respect to the (renormalized) mean field 
theory. It is to be understood that p = p* has been chosen in what follows. 
Then 

Z =  exp{ - L4FR, I( (m2(p) ) ) } " /Rmf' (exp{ --L4A } ) 

which is expanded in terms of cumulants, so that 

~, ( -1 ) "  
I n Z = l n Z R m r - - L 4 F R ' I [ ( m Z P ) ) ] +  n! 

n = l  

- -  ((Z4zj)n)c (4 .13)  

where (..-)~ are cumulant averages. Recall that we are searching for terms 
of order u ~ in the specific heat [leading terms being O(u-l)] .  Temperature 
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differentiation promotes terms so some care must be taken. It is easy to 
verify using scaling relations like (2.8) that 

(L4A)c=L 4 ~ ap((rn2(p)--(m2(P))) p) 
p = l  

~-- L4a2( (m4(p) ) - (rn2(p))  2) (4.14) 

where of course the coefficients ap arise from the expansion of FR, l(m2(p)) 
about FR,~((m2(p))). The same reasoning allows the replacement 

( ( t 4 z l ) 2 ) c  ~ (Z4al)2[(m4(p)) -- (m2(p) )  2] (4.15) 

all other cumulants yield contributions beyond the (one-loop) order of the 
calculation. 

Substitution of (4.14) and (4.15) into (4.13) yields the free energy con- 
sistently so that the specific heat is correctly given to O(u~ The only two 
expansion coefficients which enter are 

(~/~R 1 m2(p) = 
al - O ~ )  (m2(p)) 

(4.16) 
1 ~32FR 1 ] 

a 2  - 2 

and FR, l(m2(p)) may be found in the Appendix. The specific heat follows 
from d 2 In Z/dt a keeping ultimately terms O(u~ 

The form of the scaling can be explicitly discussed at this point. At 
renormalized mean field level one finds directly that 

In Z(t, u; x, L) = F[w, v] [w = L2p2t(p), v = u(p)] (4.17) 

where /~ is a dimensionless function. (A smooth background term of the 
form L4t2/u and additional background constants which can be removed 
by normalization have been omitted.) There is further simplification here 
since F(w, v) takes the form 

FRmf(W:~ V)=f(z = w/) -1 /2)  

= z 2 + l n f ~ o o d y e x p { _  {1 2 1 _ ~ z y + ' ~ . . y 4 ) }  (4.18) 

This form contains the leading logarithms in d =  4. 
More generally 

In Z(t, u; x, L ) = F F  t(p) ] [_ ~c 2 , u(p), pKL (4.19) 
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which form reproduces (4.17). This is a general statement of finite size 
scaling; the loop correction discussed above takes this form. Such scaling 
forms have been discussed by Br6zin. (4) In usual cases in which u(p) 
u* # 0 as p - ,  0 one may show that a relationship like (4.19) produces the 
intuitive sort of finite-size scaling discussed in the Introduction. 

Because of the marginality of u in d =  4, u(p) iterates slowly to zero as 
p--* 0 as indicated in (4.6). This will yield additional L dependence and 
explicit dependence on the coupling constant u. 

5. N U M E R I C A L  R E S U L T S  

It is instructive to plot numerical results for the specific heat which is 
given in the Appendix (A2). First, however, we return to the pure mean- 
field theory discussed in Section 2. The results have been shown in Fig. 1. 
Note in particular that for larger sizes the specific heat maximum does not 
change significantly; the curve merely sharpens up. 

The situation with respect to renormalized mean field theory is shown 
in Fig. 2. Recall that the central ingredient is given in (4.8). A more explicit 

io-2 C /L  ' 

8 

" , \  

\ 
\ 

�9 4 
\ 

\ 

L=32 

@ L=I6 

�9 L=8 

2 + \ \  " ~  

[ | 
I I I I 

- 0 . 2  - 0 . 1  0 0.1 0 . 2  

t ----~ 

Fig. 2. Specific heat from renormalized mean-field theory at d= 4 for various system sizes L. 
The characteristic inverse length K and uS4 have been set to unity. 

822/41/3 -4-2 
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form is shown in (A.2) where renormalized mean field theory contains all 
terms without FR, I. It is easy to show that C(t = 0) diverges as (ln ~cL) 1/3 as 
L ~ oo although such slow dependence is barely visible in the plots. One 
may also demonstrate that the specific heat peak diverges with the same L 
dependence. By direct computation for the infinite system, the per unit 
volume specific heat diverges as C ~  Iln I tl/~FI 1/3, so that the mechanism for 
the divergence is that the values at the peak and at t = 0 diverge together. 

It is interesting to consider numerically C(tmax)/L 4, i.e., the peak 
height, vs. system size, since this is what a simulator might do to look for 
logarithmic corrections. At present simulations involving 10 6 Ising spins 
are possible, and a signature of the logarithm may be possible to detect if 
sufficient precision in a narrow temperature range can be maintained. 
However even with less precision it might to be possible to detect the 
increase in peak height itself as a sign of logarithmic corrections. The 
ability to make definitive statements is restricted because the strength of the 
logarithmic corrections depends crucially on the strength of the coupling 
constant u. If u were reduced, the peak structure would remain 

I(S z C / L  4 

( 9  8 L :16 

6 

i [ I 
-0.2 -0.1 0 0.1 0.2 

t ----> 
Fig. 3. Specific heat at d =  4, L = 16, showing (b) the renormalized mean-field theory and (a) 
the result including the loop correction. The characteristic inverse length ~c and the coupling 
constant  uS4 have been set to unity. 
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approximately the same, but the overall magnitude of the specific heat 
would increase. This would make such logarithmic effects more difficult to 
observe in an hypothetical simulation of a system characterized by a small 
fourth-order coupling. Additional numerical and analytic results suggest 
that the position of the maximum tma x goes to zero with size rather rapidly, 
i.e., ]/maxl ~ [ L2 lnl/6(~cL)] -~ 

In Fig. 3, the effect of the loop correction to renormalized mean field 
theory is shown. As might be expected, the specific heat peak is enhanced 
and sharpened. 

6. R E S U L T S  IN 4 - ~  D I M E N S I O N S  

The analysis presented above may be carried over directly to d = 4 -  
dimensions. In the preceding sections we have concentrated on d = 4  
because an asymptotically correct finite size calculation is possible. Here 
one may calculate order-by-order in e in analogy with ordinary bulk 
phenomena. Note, however, that since the finite-size corrections are O(1), a 
consistent calculation must include bulk contributions to the trajectory 
integral to two-loop order. This gives O(1) bulk contributions correctly. 

One must solve the renormalization group flow equations (4.5) in 
which case now one finds 

u(p ) - up ~ 3 u 
Q(p),  Q(p )=  l +-~-(pe ~ - 1 )  

t(p ) = tQ(p ) 1/3 

m(p) = m exp{ 1 /72 [u -  u(p)] } (6.1) 

consistent to one-loop order. The expressions for u(p), t(p), and m(p) 
reduce to those of (4.6) when e ~ 0. Hence the renormalized mean-field 
contribution (including the trajectory integral) is 

F 1 1 Rmf~---~ p*2t(p* ) m2(p * ) + ~ (top) ~ u(p* ) m4(p *) 

t21r f f  dx 
32~z 2 , ~  [Q(x)] 2/3 (6.2) 

which goes over to the four-dimensional result (4.8) as e--*0. Since the 
loop integral may actually be calculated in d - -4  consistent to one loop 
order, the one-loop part FR, ~ properly goes to the previous result as e ~ 0. 
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On the other hand for e > 0  one may set u = u *  and observe that 
m(p)..~m to this order. Then 

LdFR(I, m ,  u, to, L ) =  Ld/'Rmf+ L J [ F R ,  I ] J _ 4  e (6.3) 

where the product La[FR.1]a=4_~ is identical to La[FR,~]a_4, where 
[FR,1]a=4 is given in (A1), except that the bulk term 

1 LaTe(p ) Ii  n L 2 T ( p ) +  1] 1 sdpaLatz(p) 
64~2 _ ~ 2 A -  

is divided by (~cpL)L With these modifications it is clear that the free 
energy takes the form (within additive constant) 

lnZ=ln f dmexp{-LaFR}=La[T.I.]+ln f dxe A (6.4) 

where A depends only on the combination L2p*2t(p*)+ lu*x 2, and T.I. is 
the trajectory term of (6.2). The final free energy depends only on the com- 
bination L2p*2t(p*). To see the scaling form one sets ~cp*L= 1 so that 
L2p*2t(p*)=(p*) 2 l/VL2t=(t/K2)(tcL)l/v. Hence the full free energy 
F = In Z is a function of this variable and 

L d l n  Z = L-dF[(t/lc2)(lcL) l/v] 

= tca(t/tr av F[(t/tc2)(tgL) 1/v] 

Differentiation twice with respect to temperature yields the heat capacity. 
Further details are provided in the Appendix. 

For the above discussion it is clear that a scaling form 

K~C La - (~c 2t) ~ X[~c 2t(ls (6.5) 

holds for the specific heat. As such the function X(y) is not itself universal; 
the limiting form X(y ~ 0) essentially yields the nonuniversal specific heat 
amplitude for the bulk system (T>T,.). Given an arbitrary overall 
amplitude the function X(y) is then universal, and one may compare two 
differential systems in the same universality class. [Alternatively J~(y)= 
X(y)/X(oo) is expected to be universal.] In Fig. 4 the approximate (d=  3) 
form for X(y) is given by setting e=  1 in the numerical evaluation of 
Eq. (Aa). 4 The scaling function is evaluated by fixing ~cL and evaluating the 

4 The limiting values of function X(y), as y ~ +oo, give the specific heat amplitudes of the 
bulk system. The amplitude ratio of the bulk system is 

A + 2 ~ 1 +(7/12)e  2 ~ 
A 4 1--(5/12)e  4 ( 1 + ~ ) + O ( ~  z) 

and our function X(y) gives the value consistent with the first equality evaluated at e.= 1. 
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Fig. 4. 

- 2  
10 X(lyl) 

I0 

I I I I 1 I I [ 

- 4 0  - 2 0  0 2O 40 

y = ( t / l < 2 ) ( X L )  I/u 

The scaling function X(I y]) at d = 4 - e ,  evaluated at ~=  1, where y =  (t/K2)(KL) l!v. 
The two branches for t ~ 0 have been shown. 

specific heat at values of t/tc 2. The argument y is extracted using v = 
(1 /2+  1/12e) --, 0.58 at e =  1. (Alternatively, one may use the appropriate  
values of v and ~ for d = 3 to obtain a "hybrid" estimate which may offer 
better agreement with other schemes.) To compare X(y)  with a simulation 
or experiment, in which one would plot 

L d ( A  T / T c )  - ~ vs. 

one must allow for a rescaling of the magnitude X as well as the indepen- 
dent variable y. The latter rescaling allows for a nonuniversal "metrical" 
factor associated with the combination t L  x/v. 

If u r u* ordinary corrections to scalling get mixed in with finite size 
corrections. Keeping u C u *  allows one to consider the crossover from 
"Gaussian" to "Wilson-Fisher" fixed points and investigate circumstances 
in which the crossover is or is not completed before the thermodynamic 
functions are rounded. Experimentally one typically sees "nonclassical" 
exponents before the rounding regime is reached, but on small systems 
there may in principle be interference. 
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7. C O N C L U D I N G  R E M A R K S  

The application of finite-size scaling ideas has become widespread 
since it has become appreciated that, for determining critical properties of 
systems which undergo second-order phase transitions, some sort of 
extrapolation with size is essential. Using ideas of finite-size scaling a 
simulator can infer behavior of the infinite system from "rounded" data. 
Br6zin ~4) has shown that the phenomenological form of finite-size scaling 
follows from renormalization group equations. The essential point is that 
counterterms for the infinite system suffice to renormalize the theory for 
finite L. 

In this paper we have shown how to compute explicitly ther- 
modynamic functions in the scaling regime Liar> 1, ta2~l, where a 
represents the microscopic length scale of the system, say, the lattice 
spacing. The computation in d =  4 is exact to leading logarithms and so 
provides a potentially useful benchmark for simulations. By adjusting two 
"metrical" factors, corresponding to a T -  T,. scale dilation or contraction 
and an amplitude for, say, the specific heat, along with the nonuniversal 
parameter u, the theoretical form discussed in the Appendix is expected to 
agree in the scaling regime with a simulation. (Of course only if the u which 
one obtains by such a fitting is small can one expect one-loop corrections 
to give a reasonable representation in a region about criticality.) 

The calculation in d = 4  also has the advantage of addressing the 
question of visibility of logarithmic corrections in a rounded regime. This 
information is carried in the increase of the peak height shown in Fig. 2. 
For the Ising case the increase is proportional to lnl/3(L/a). Our numerical 
estimates indicate that if data in the range L/a = 8 to L/a = 32 (or 64) were 
available and if specific heat peaks were determined to _ 5 %, then a case 
might be made for direct observation of the logarithmic corrections. (These 
statements assume a reasonable value of uSa~ 1.) 

Below d = 4  we cannot calculate the asymptotically correct result 
without working order by order in e = 4 - d .  However, to one-loop order 
we have produced the finite-size scaling function for the specific heat. With 
the adjustment of two metrical factors (now u ~  u* and need not be 
adjusted) it would be interesting to see how results at e-- 1 compare with 
Ising simulations in three dimensions. 

After the completion of this work we learned that Br6zin and Zinn- 
Justin ~12) have recently shown that an e expansion for finite-size systems 
can be constructed. Their scheme for expanding about mean-field theory in 
finite systems is essentially the same as ours. 
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8. APPENDIX  

Some technical details are presented in this Appendix. 
The renormalized FR,1(t(p), m(p), u(p), ~cp, L) is given in d =  4 by 

S d T2 [-1 T q Sa [FR, I]d=4 =-~ "- L ~ - l n ~ J - - - ~ p 4 t 2 ( p )  

Sd 1 1 _~,) 
+ --~ T2EI(c~ -~-s [E~(co) + in co + 7] - ~--s (1 - e 

co e ~ +  - - ( 1 - e  mx)[x4(rcx)--l] 
- 4 L  ---~ ~ 1 x 

+ ~ dx x ( 1 - e  ~/x)Ex4(nx)- 1] (A1) 

where 

2 1 T--* T ( p ) - p  t(p)+~u(p)mZ(p) 

co =_ LZT(p)/4rc 

and where X(x) has been defined in (3.6), El(z) has been given in (3.10) 
and 7 is Euler's constant. Derivatives 

OFR, 1 ~2/'8,1 
al - •m2(p) and a2 -- 63[m2(p)]2 

evaluated at mZ(p*)= (m2(p*)) are required for the specific heat; the 
choice of p* has been discussed in Section 4. These derivatives are easily 
converted to derivatives with respect to T(p). Then the singular part of the 
specific heat, which is evaluated numerically in Section 5, has the form 
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c ~ = ~  L4[ <m4(p*)> - <m2(p*) > 2] 

x L ar(p)j a r ( p ) = j ,  LS<[m2(p*)]4>,, (A2) 

where FR,1 is FR, 1 without the term Sap4t2/4. In the final expression 
derivatives, as indicated by I, ,  are evaluated at 

T(p* ) = p*2 t(p* ) + �89 )< m2(o *) > 

and ( >c means cumulant average. The terms without  /~'R,I belong to the 
renormalized mean field theory. Finally it should be recalled that 

ru(o*~L41-J/2D Fp*2t(p*)L21 (A3) 
<m2@*)>=~ . . . . .  JL "(--(P-~)'~- J 

as is (2.7). 
In Section6 the modifications for dealing with d = 4 - e  were 

described. A general formulation is possible (as noted) which goes over to 
the d = 4 results. For simplicity, as long as one does not intend to study the 
limiting behavior as e--, 0, one may set u = u*, the fixed-point value. Then 
in place of (A2) one finds the dimensionless quantity 

L a-(p*tcL)~(p*) ~/v [ < x 4 > _ < x 2 > 2 ] _ L  d 4c02FR,1 
aT(P) 2 , 

+ 5_6_ {2 [ U u , 2  2~2F~. R"/n= - U  4 •2/'R,I "~ . <(X2)4>c. (p,K.L)2S} 
cOT(p)J Or(p)2j, 

S s ( 1  s )  
+ 4e \ +5 (P*)-~/~ (A4) 

Once again the symbol * implies derivatives are evaluated at 

r(p*) = p,2 t(p* ) + �89 )~<m2(p *) > 

It is straightforward to verify 

aT(p)J  and (A5) 
L aT(p) 2J 
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became functions of L2p*2t(p *) alone. Explicitly the averages 
computed according to the probability distribution 

_ 1 2 ,2 * _~.u,(p,tcL)~x } exp -~Lp t(p )x 2 1 4 
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<x~> are 

(A6) 

so that the cumulants also depend only on that combination. Substitution 
of p* -- (~cL) 1 yields the scaling form given in Eq. (6.5). The explicit form 
of the scaling function is found numerically using, as in (4.11), 

p,Zt(p,)L2 +u_f~ (p,~cL)~(x2) + 1 = (p*~L) 2 (A7) 

which implies 

p *  = (KL) - I  R ( t L  1/v) 

The "universal" scaling function X(y) for the specific heat has been 
plotted in Fig. 4. See the text for further discussion. 
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